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ABSTRACT

To obtain the expressions for mean and varianceliability estimateR = P(X> Y), analytically, is generally

difficult. Here, we find approximate expressions foean and variance of estimated system reliabititynterference
theory when stress and strength follow some padaticdistributions. We have evaluated approximatésnean and
variance of estimated reliability when stress-githrboth follows either exponential or normal distition. For validity of
approximation method, we have used Monte-Carlo kitimn. Also, Normal probability plots of estimatedliability
samples are drawn for different values of the patars of the distribution. From Monte Carlo simigdat(MCS), it is

observed that approximation for mean and variafiestimated reliability is up to the mark.
KEYWORDS: Reliability, Interference Theory, Monte-Carlo Simatibn (MCS)
1. INTRODUCTION

In Interference theory of reliability R=P(X3, the reliability of a system and its other rélidy characteristics
can be expressed as some functions of the parawadttre distributions of strength (X) and stregsdssociated with the
functioning of the system. We estimate these paenm@nd substitute these values in the expresgiongliability and
other characteristics to get their estimates.dfdhtimates of parameters used here are maximetintkd estimators then
from the invariance property of MLE’s, the corresgimg estimators of reliability are also MLE's. Theexists extensive
literature for estimation of reliability analytidal for single component systems. But the reliapiléxpressions for
multi-component systems are not simple enoughdititiete analytical estimation of reliability antsiother characteristics.
Also, due to lack of stress-strength data one watyi® simulation. For example, (Manders et al., 2,98Idrisi, 1987,
Stumpf and Schwartz 1993, Zhang et al., 2010) hsimaulated stress-strength and estimated reliabi{iaul and
Borhanuddin, 1997, Rezaei et al., 2010) estima#idhility of stress-strength model, using Monteri@asimulation
(MCS). (Ahmad et al., 1997), obtain Bayes estimafeB(Y<X) using MCS. (Uddin et al., 1993) estinthteliability for
multicomponent system using MCS. (Patowary et24l12) estimated reliability of n-standby systermgsMonte-Carlo
simulation. Similarly, it is difficult to obtain #hdistribution of a reliability estimator or eves exact mean and variance,
analytically. In this paper, an attempt has beedenta find approximate expressions for mean antnee of estimated

reliability on the basis of (Lyold and Lipow, 1962)d check the validity of the approximation by N&arlo simulation.

In Section 2, we have given the approximate exprassfor mean and variance of single parameter teuad
parameters distribution cases. In Section 3, apmation expressions of mean and variance are adataihen stress-

strength (S-S) both follows exponential or normatribution. Also, Monte-Carlo simulation (MCS) isxtensively
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performed for verification purpose of expressions.
2. METHOD TO OBTAIN MEAN AND VARIANCE OF ESTIMATED RELIABILITY

In this paper, existing method of (Lloyd and Lipoi862) is used to estimate reliability in interfece models
when stress-strength follows particular distribatiBlowever, as it is not easy to get real life dat@ have used MCS for

estimation of mean and variance of estimated riitiab

The reliability can be expressed as a functiorhefparameter§= 91, 92, ... of the distributions of strength

X and stress Y. According to the above method?ii(é) is the MLE of R 6), then

(i) If 8= B i.e only one parameter is involved, then the agiprate mean ofR (B) is given by

E[Fi(é)] =R(6)+O($j,whenEé): 9, 2.1)

1
Where C{Mj 2>0as M> oo .

M is the sample size of estimated reliability saeapDbviously,R (9) is asymptotically unbiased for 8.

The approximate variance d?k(e) is given by

A IR(6) A 1
Var [R(G)} = |:W:| Var (9) + O(Wj (2.2)

6=06

1
where C(Mglzj 2>0as M> o .

(i) If 0= (A, ), i.e., two parameters case, then the approximaan and variance df% ()A\,ﬁ) are given,

respectively, by Eq.(2.3) and Eq.(2.4)
E[RG.[)]=RA. + 0(3) (2.3)
M

when E(}A\): A and E(1) ~ .

So, FAQ ()A\,ﬂ) is asymptotically unbiased for R(J) .

Ao~ T2 An T2
Var[@(x,m]{w} Var(x){%ﬂ V(@
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oF (X,a)} {a ﬁ(i,ﬁ)} o ( 1
+ | —= e e— COV()\ s u) +0 377 | (24)
{ 0A A=Al op A=A M
Let DM be the difference betweeE\[I?Q(}A\ : ﬁ)] and RQ\, ) i.e.
om = |E[ R&, )] - Re 4] (25)

Similarly, let DV be the difference df/ar[ IEQOA\ A )} and r.h.s of Eq.(2.4).

If the values of these differences are negligitilen approximate expressions are considered a$asadiry.
3. STRESS-STRENGTH FOLLOWS PARTICULAR DISTRIBUTION

We have seen that in interference models systaabildl is a function of stress-strength parametéret f(x) be
the p.d.f. of strength (X) of the system and g(g)that of the stress (Y) on the system. Here, we ltansidered two

cases.
Case I: When both f(x) and g(y) follows exponential distrtion (one parameter case)
Case Il: When both f(x) and g(y) follows normal distributi¢two parameter case)
3.1 Stress-Strength Exponentially Distributed

Let f(x) and g(y) be exponential with meads andJ, respectively. Then the system reliability is givey

(Kapur and Lamberson, 1977)

A
R=——=R(A,u),say,A >0,u >0 (3.1.1)
A+

Suppose M units are put on test. Let %, ..., Xy be the strengths of the M units and lgty, ..., yu be the

stresses working on them. Now we know that for egmbial distribution sample mean is an MLE of p@pioih mean, and
is unbiased, consistent, sufficient and effici¢tence, X (: ﬁZXi j andy (: ﬁz yij are MLE’s of Aand [l with
the same properties,
ie.A=Xand{l=y (3.1.2)
An estimate of R is given by

X
X+

R=

= FAQ(T(, V), say (3.1.3)

<l

Since, Ii is a one-valued function oX and Yy, hence from the properties of MLE’& is an MLE of R. So

from EqQ.(2.3)
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E[R(, V)]=RO, w)+ o(ﬁ), (3.1.4)

Thus R(X, Y) is asymptotically unbiased f&(\, ).
Further, since X and Y are independent heXcand Y are also independent and so

Cov(x, y)=0 (&)L

Then from Eq.(2.4) and Eq.(3.1.5) we have

~ 2 R 2
Var[li(y,—y)]:{%} Var(x) +[@} Var(y)

X=Ay=H X=N\y=H
of L) -
M
Now, from Eq.(3.1.3)
OREZY)| __ ¥, JORERY|_ _ X _ (3.1.7)
X (X+Y)? 0y (X+Y)?

We also know that for exponential distributionsnsidered here

Var (X) = A2 and Var(Y) :pz

_ Var(X) A o _Var(Y)
H , Vv =————~=—and V = = 3.1.8
ence, VarX) v M and Var(Y ) v M ( )
Substituting from Eq.(3.1.7) and Eq.(3.1.8) in BdL(6), after some simplifications, we get
~ 222 p? ( 1 j
Var| R(X,Yy)|= +0 , 3.1.9
(R, V)] VRN Ve (3.1.9)

which >0 as M> o, Hence,FAQ(T(, V) is consistent forR (A, ). Thus FA?(T(, ) is asymptotically unbiased,

consistent and sufficient fdR (A, 1), sinceX, Yy are sufficient forA andu, respectively.

From Eq.(3.1.4) and Eq.(3.1.9) we get

DM = ‘E[ﬁz(i,v)}—

3.1.10

e (3.1.10)
. B 2)\2 2

DV= Var[R(Y,y)]—M()\—Eu) (3.1.11)

Impact Factor (JCC): 2.6305 NAAS Ratirgy45



Evaluating Approximate Mean and Variance of Estimaed Reliability in Interference
Models using Monte-Carlo Simulation (MCS)

We use MCS to establish the validity he approximate expressions Eq.(3.1.4) and Eq.(). As earlier, we take

independent samples of sizes M frcexp( ) andexp(t), populations for a givel\ and . From these we obtain

estimates oA and 1 as X and Y and sibstituting these values in Eq.(3.1we get an estimate wﬁ( . The whole process

is repeated k times and accordingly we get k vabiR . We obtain mean and variance R viz. E[R(X,y)] and Var

[R(X,Y)]. The values are tabulated in Ta3.1.1 We have also drawn normal probability | (NPP) for R in each case

and found that the fitting of normalistribution is quite good. It conform finding ofl¢yd and Lipov, 1962). For

illustration purposewe have given a NPP graph 1A= 2, i=2, M = 500 and k = 100 in Fig.3... DM and DV are

obtained from Eq.(3.1.10) and Eq.(3.]) for givenA, 1 andM and given in the same Table 3.

0.997 . . . . —
-t
099 o B
0 M =500 - I+++
095 =100
0.9 "=: -
075 o -
%ﬂﬂl .
&
025 B
10 + u
[1]1°1 ++¥T, -
+ . _
oml[ T ]
0003 I I I - L L =
bA7 048 049 05 51 .52 053
Falimaird R
Figure 3.1.1: (Exponential S-S)
2\ %p?
Note: In Table 3.1.1, V = AR
M(A + 1)
Table 3.1.1: Exponential Stress-Strength
M| K |AN| K| R |MeanofR |SDofR | V z DM DV
500| 50| 2| 2] 0.500( 0.5023 0.0139| 0.050p 1.3014€.0006| 0.0023
500| 200 2| 2] 0.500( 0.4990 0.0152 | 0.025p 0.9049.0007| 0.0004
500| 100 2| 2| 0.500( 0.4992 0.0155| 0.0354 0.52320.0012| 0.0011
500| 100| 3| 2| 0.600( 0.6017 0.0156 | 0.0339 0.08270.0011| 0.0009
500| 100| 2| 3] 0.400( 0.3993 0.0150 | 0.0339 0.46410.0016| 0.0009
100| 100f 2| 2] 0.500( 0.4962 0.0390 | 0.0354 0.9790.0045| 0.0014
100| 100f 2| 3] 0.400( 0.3995 0.0328 | 0.0339 0.1573.0041| 0.0014
100| 100f 3] 2] 0.600( 0.5996 0.0290 | 0.0339 0.13720.0001| 0.00172
50 | 100, 2| 2] 0.500( 0.5029 0.0551| 0.0354 1.6772.0019| 0.0001
50 | 100/ 2| 3] 0.400( 0.4097 0.0478 | 0.0339 2.0269.0006| 0.0001
50 | 100/ 3] 2] 0.600( 0.5050 0.0562 | 0.0330 0.8949.0078| 0.0004

As noted earlier, for achieving a better estimatefR, we have taken M = 50But to see the accuracy of

Eq.(3.1.4) and Eq.(3.1).9we have taken M = 50 and 100 also and foundaha-values are insignificarbarring M = 50

when k = 100,A= 2 and= 2. The values of DM and DV are quite small fdifetient values of M, so we may assu
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that approximations given by Eq.(3.1.4) and Eq.63.are up to the mark.

3.2 Stress -Strength Are Normal Variates

Let us suppose that X~N(, 002) and Y~N(u,02). Then we have seen that the reliability of thetem is given

by (Kapur and Lamberson, 1977)

R=® A

where @ (*) is c.d.f. of standardized normal variate.

,—oo<)\,|_1<oo;(02>0,0'2>0, (3.2.1)

Without loss of generality, we may assume that ofi¢he variable follows N(O, 1). Or often the meand
variance of strength are known because, eg., ptiotuis more or less under control. In such case &ale may assume
that X ~ N(O, 1). Then Eq.(3.2.1) gives,

- u 2

R=Pp| ——— |=1-®| ————| = R(4,0°), say (3.2.2)
J(@+a?) J(@+a?)

Let us suppose that M components are put on tessavitrengths are known and lgt ¥, ..., ym be the M

stresses on them. We know thyit and § are independent MLE’s ofl andoz, respectively, which are unbiased,

consistent and sufficient, where

vy -y)? o 1w
g=Yy-"1—"—andy=—2Y, 3.2.3
El M1 " y MEY. (3.2.3)

Then from the properties of MLE’SfR , given below, is the MLE of R

R=1-0 _Y |- IA?(V, &), say (3.2.4)
J(@+)
Hence, from Eq.(2.3)
- 1
- R(Y, 0° — 2.
E[R(y,§)] (0 0)+0(Mj (3.2.5)

Now, sincey and § are independent, hence

Cov(y, € )=0. (3.2.6)

Hence from Eq.(2.4) and Eq.(3.2.6) we have
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i LA 2.2
Var[R(V, 5 )]{—} Var(y) + {%ZZSZ)} Var(s)

ay y:u!szzo-z V:H’SZ:O'Z

1

Now from Eq.(3.2.2)

M}:_ 1 |ol Y (3.2.8)
{ oy {\/(1+52)] L/(hsz)],

ORY.S)| _1__ ¥ y
And| —— 2| = —| —— | ®| ——= 3.2.9
{ 0 } 2| 1+ )2 J@+s) ( )
Further, we know that
Var(y) = f and Var($) = 2;‘4 (3.2.10)
Yy M M 2.
Substituting from Eq.(3.2.8) , Eq.(3.2.9) and EQ(3) in Eq.(3.2.10) we get
. 1 @@, w2 20% 1
Varl RO S e ® faaroy m e ) o
Where® = @ K .
J(@+0?)
. ¢2 g2 U204
orVar| R(y, € )| ~— 3.2.12
r ar[ v )]_ M L+cr2+2(1+cr2)3 (#2142

Thus, we see from Eq.(3.2.5) thghis asymptotically unbiased for R and from Eq.(312.it is consistent also.

Since, Y, & are sufficient forpl ando?, so it is sufficient also.

Now, from Eq.(3.2.5) and Eq.(3.2.11),

DM= ‘E[ﬁ{@ﬁ ﬂ— R 02 b (3.2.13)
5 1 o w20t
And DV = VaI’[R(y,§ )]_ 1+ 02 Vq) _qu) (3.2.14)

Here, also we use MCS for the validation of therapimations Eq. (3.2.5) and Eq.(3.2.11). For thasirathe
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Sec.3.1, we take samples of differsizes M from N(LJ., 02) population for particular values 1 and 02; its mean and

variance arey and $, respectively. Subsuting these values in Eq.(3.2.4)e get an estima Ii of R. The whole process

is repeated k times giving k valuesRf Its mean and variance giveE[Ii(V, §)] and Va[li(y, )], respectively.
DM and DV are obtained from Eq3.@.13) and Eq.(3.2.). The walues are tabulated in Table 3. We have also drawn

NPP graphs forFAQ in each case of Table 3.. NPP graphs suggest that the data sets reasofudloly the normal

distribution. For illustration purpose we have givanly one NPP graph 1FA{ when M =500, k =20Cu=1and0 =1
in Figure 3.2.1.

Here, also we have taken M = 500, but forcking the accuracy of Eq.(3.2.5) and Eq.(3.), we have taken M
=50 and 100 also. From Table 3,2xk note that for k = 100-value is significant. So for achieving a betteiraate of R
we have taken k = 200 throughout and found that-values are insignificant. For example, z = 0.252#&mwm = 0 an
O = 1. We observe thahe values of DM and DV are quite small for diffet values of M, so the proximations given by

Eq. (3.2.5) and Eq. (3.2.14re reasonab

Table 3.2.1: Normal Stress-Strength

M| K |[H|o R | MeanofR | SDofR | Zfor R | DM DV
500 100/ O 1| 0.5000| 0.4975 0.0115 2.2126| 0.000:z | 0.0001
500 200/ O 1| 0.5002| 0.5002 0.0122 0.2522| 0.000:z | 0.0001
500 200/ 1| 1] 0.2398| 0.2400 0.0116 0.2822| 0.000:z | 0.0001
500 200 2| 1| 0.0787| 0.0787 0.0056 0.1737| 0.000C | 0.0000
500 200f -1l 1| 0.7603| 0.7608 0.0113 0.7002| 0.0007 | 0.0006
500 200f -2 1] 0.9214| 0.9211 0.0057 0.6402| 0.000: | 0.0011
100| 200| O| 1| 0.5000| 0.4986 0.0277 0.7397| 0.001¢ | 0.0010
100| 200 1| 1| 0.2398| 0.2403 0.0252 0.3223| 0.004: | 0.0006
100| 200 2| 1| 0.0787| 0.0781 0.0125 0.6477| 0.002¢ | 0.0027
100| 200 -1l 1] 0.7603| 0.7574 0.0220 1.8355| 0.000: | 0.0056
100| 200 -2| 1] 0.9214| 0.9202 0.0128 1.2910| 0.002( | 0.0124

50 | 200 0| 1| 0.5000|{ 0.5000 0.0376 0.3851| 0.0027 | 0.0005

50 | 200 1| 1] 0.2398| 0.2402 0.0343 0.1731| 0.001: | 0.0002

50 | 200 2| 1|0.0787| 0.0767 0.0176 1.5687| 0.000< | 0.0001

50 | 200 -1 1| 0.7603| 0.7590 0.0323 0.5649| 0.000¢ | 0.0027

50| 200| -2| 1| 0.9214| 0.9203 0.0189 0.7611| 0.001: | 0.0062

0997 ' ' ' ' ' ' ' ' ' ' ’j’*
s ]
= B o
- o -
§ 050 -
A 035 -
oo at
::z - +t f/ .
o0 |- .
oon3-_ -
21 ﬂ.2I|5 ﬂ.lﬂ 0.‘25 l].I23 ..2‘35 0.‘24 0.2‘45 ..I25 ﬂ.Zlfﬁ 0.:'!5
Estanaird R

Figure 3.2.1: (Normal S-S)
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4. CONCLUSIONS

In this paper, approximate expressions for meanvamidnce of estimated reliability in interferent®dels are

evaluated using (Lloyd and Lipow, 1962) method. djexe have considered two cases-when both strebsteength

follow exponential distribution and when both stresd strength follow normal distribution. Validioy approximations is

checked by Monte-Carlo simulation. We have fourat #xpressions are acceptable, particularly whersétmple size is

reasonably large.. The approximate expressionsbeaextended when stress strength follow more thanparameters

distributions, also.
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